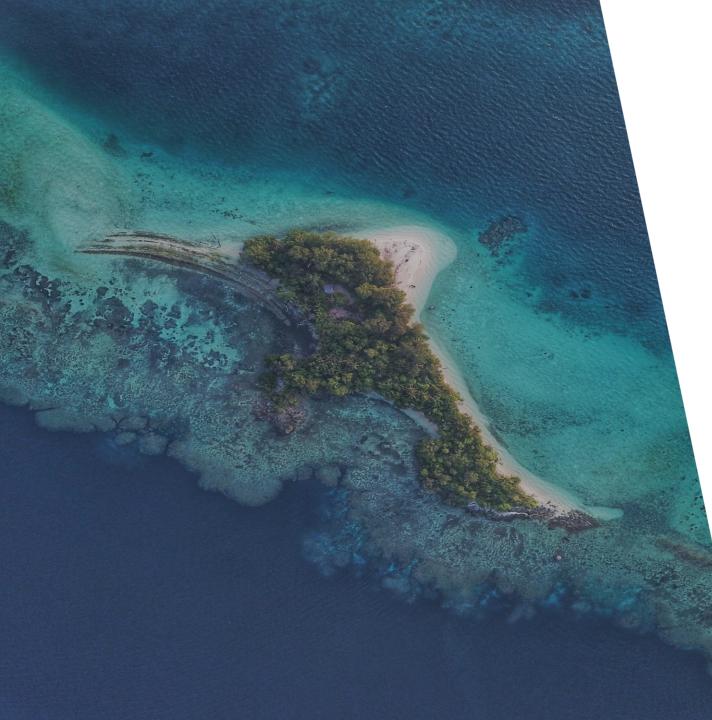
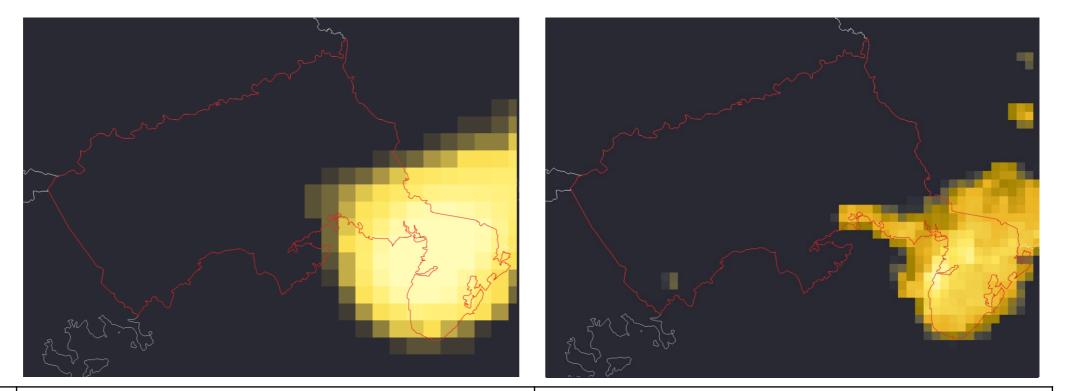

Evaluation of Remotely Sensed Nighttime Light as Complementary Data Source for Economic Indicators in Pacific Island Economies


Homer Pagkalinawan, Madhavi Pundit, Jaqueson Galimberti, and Priscille Villanueva Macroeconomics Research Division Asian Development Bank

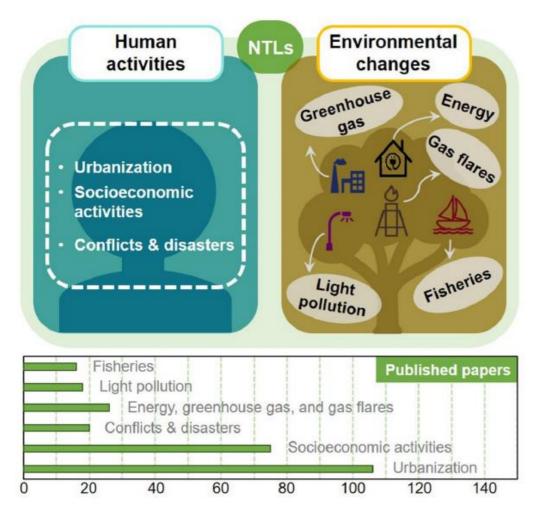
Presentation Outline

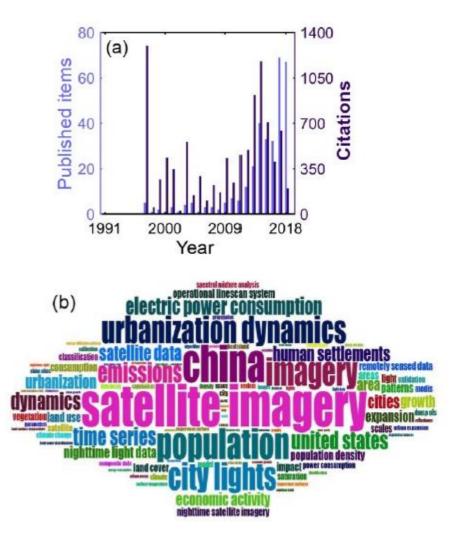
- **1. Introduction to Nighttime Light**
- 2. Research Motivation and Framework
- 3. NTL for Economic Monitoring
 - GDP, Sectoral GDP, GFCF
 - Trends in Built-up Areas
 - Pixel-level Analysis


Presentation Outline

- 1. Introduction to Nighttime Light
- 2. Research Motivation and Framework
- 3. NTL for Economic Monitoring
 - GDP, Sectoral GDP, GFCF
 - Trends in Built-up Areas
 - Pixel-level Analysis

Nighttime Light (NTL)


observation of the Earth's surfaces illuminations from multiple sources, both natural and man-made, such as moonlight, cities (and its buildings, and transportation infrastructures), and ground reflection (snow, water, others; NASA)



	Defense Meteorological Satellite Program	Visible Infrared Imaging Radiometer Suite		
Frequency	Annual	Daily, Monthly, Annual		
Resolution	1km	500m		
Availability	1992 – 2013	2012 – present		

Nighttime Light (NTL): Researches

Applications of satellite-based NTL remote sensing (Zhao et al, 2019)

Research Motivation

- Existing literature on the correlation of NTL with economic indicators focuses on big economies, with little work that includes Pacific Island Economies (PIEs).
- Recently, World Bank (2023) published a working paper highlighting their applications on NTL in their different projects in the Pacific – NTL as potential complementary data source to official statistics particularly in monitoring gas industries, supporting poverty mapping exercises, and generating detailed electrification statistics
- This study is designed to further address the research gaps on NTL applications in the PIEs. With the goal of assessing the potential of remotely sensed NTL as a complementary data source of economic conditions

Research Framework

Exploratory data analysis

1. Data Collection

- Downloading of NTL Data
- Collection of macroeconomic indicators

2. Panel Data Generation

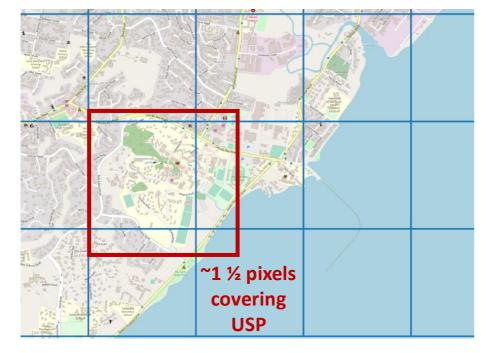
- Geospatial analysis
- Linking of geospatial and macroeconomic datasets
- Conversion to tabular data format

3. Macrolevel Analysis

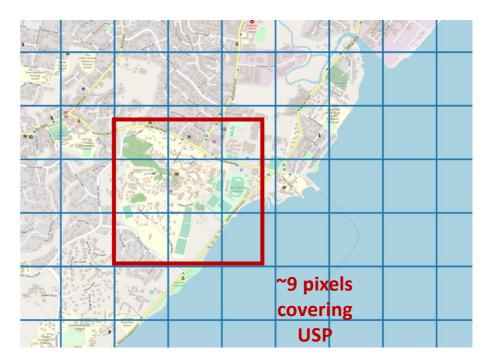
- Correlation between NTL data and macroeconomic indicators
 - GDP
 - Sectoral GDP
 - Gross Fixed Capital
 Formation

4. Built-up Area Analysis

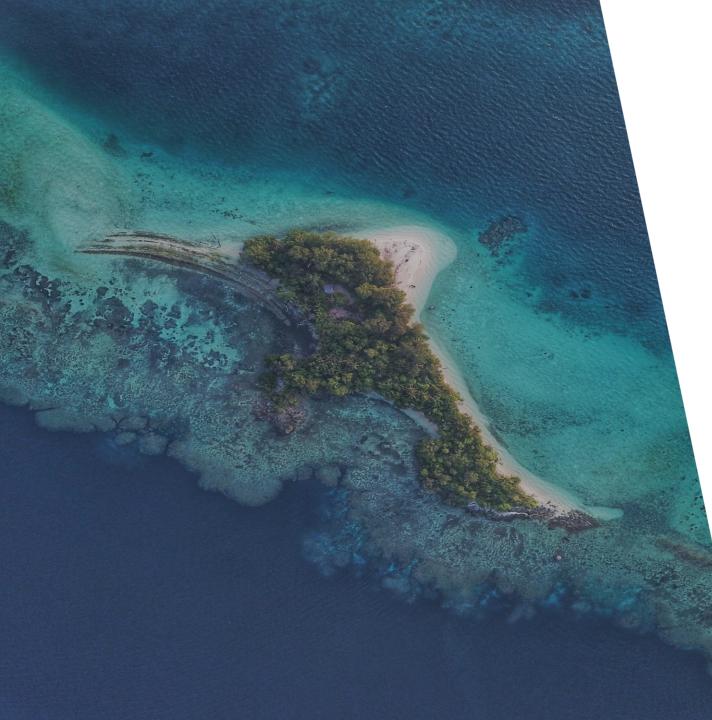
 Subset analysis focusing on areas identified as building footprints and built-up areas



5. Pixel-level Analysis


 Subset analysis at the most granular level of NTL data

Nighttime Light (NTL)


Comparing of pixel resolution of these NTL data shows that both are more ideal for macro-level analysis.

Defense Meteorological Satellite Program's Operational Line-scan System (DMSP-OLS)

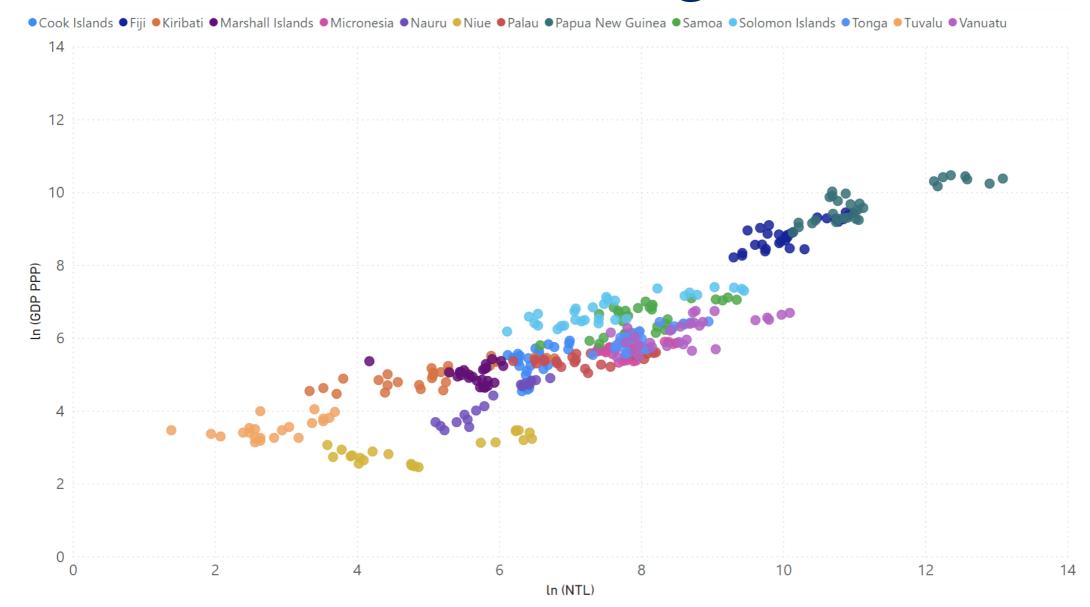
Suomi National Polar Partnership Visible Infrared Imaging Radiometer Suite (SNPP-VIIRS)

Presentation Outline

- **1. Introduction to Nighttime Light**
- 2. Research Motivation and Framework
- 3. NTL for Economic Monitoring
 - GDP, Sectoral GDP, GFCF
 - Trends in Built-up Areas
 - Pixel-level Analysis

Several iteration of NTL data were explored in the research. Among these, **natural log-transformed** will be discussed in the succeeding slides.

Nighttime Light

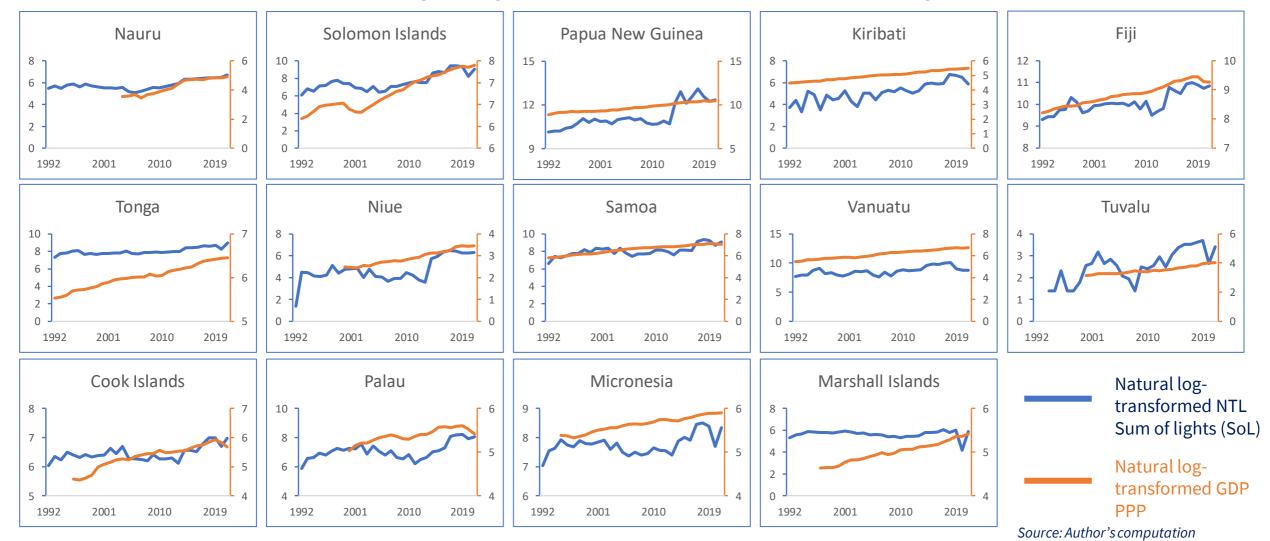

1.Harmonized NTL (DMSP-VIIRS)
a.Digital Number (DN) Value
b.Natural log-transformed DN
c.Year-on-year difference
d.Year-on-year growth
2.VIIRS

Economic Indicator

1.GDP PPP (in USD)
2.GDP at constant prices (in various currency units)
3.Sectoral GDP

a.Agriculture
b.Industry
c.Services

4.Gross Fixed Capital Formation
5.Government Spending


- NTL series coincides with GDP levels across a 30-year observation period for most of the Pacific Island Economies.
- Year-on-year comparison yielded slightly higher correlation compared to a one-year lag comparison.

	GDP PPP, ln-tr	ransformed	GDP LCU (at constant prices) , In-transformed		
	Correlation (Year-on-Year)	Correlation (1-Year lag)	Correlation (Year-on-Year)	Correlation (1-Year lag)	
Nauru	0.97018	0.94836	0.96280	0.94159	
Solomon Islands	0.85171	0.79974	0.90595	0.87837	
Papua New Guinea	0.84632	0.82045	0.71199	0.68190	
Kiribati	0.83344	0.82632	0.83970	0.71884	
Fiji	0.80531	0.76854	0.52370	0.50782	
Tonga	0.80329	0.79270	0.82113	0.78462	
Niue	0.72236	0.68039	0.75250	0.63359	
Samoa	0.66879	0.65035	0.43911	0.52443	
Vanuatu	0.65570	0.68190	0.58609	0.42432	
Tuvalu	0.56104	0.60443	0.77824	0.77751	
Cook Islands	0.46144	0.37750	0.53587	0.45850	
Palau	0.39601	0.29565	0.65346	0.58856	
Micronesia	0.33772	0.30315	0.27197	0.32834	
Marshall Islands	-0.20969	-0.31183	-0.21767	-0.21342	

Source: Author's computation

- NTL series coincides with GDP levels across a 30-year observation period for most of the Pacific Island Economies.
- Year-on-year comparison yielded slightly higher correlation compared to a one-year lag comparison.

Sector-Level Analysis

• Similar trend in correlation was derived from GDP generated by the service sector. The sector contributes to at least 50% of total GDP for most economies except PNG.

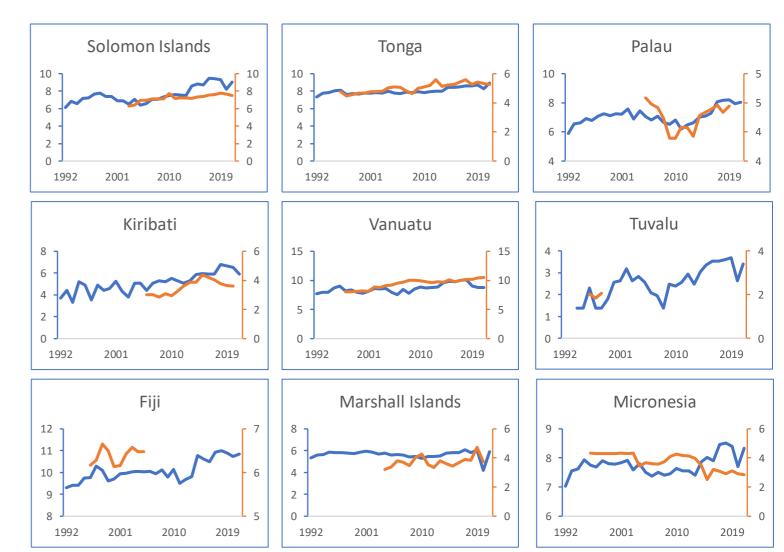
	Services			Industry			Agriculture	
	Correlation (Year-on-Year)	Share of Sector		Correlation (Year-on-Year)	Share of Sector		Correlation (Year-on-Year)	Share of Sector
Nauru	0.95410	77%	Solomon Islands	0.90793	15%	Papua New Guinea	0.76519	33%
Solomon Islands	0.90625	52%	Nauru	0.90362	17%	Tonga	0.74809	6%
Kiribati	0.81364	66%	Kiribati	0.82946	10%	Kiribati	0.70918	24%
Tuvalu	0.80571	68%	Tonga	0.74142	18%	Solomon Islands	0.70417	22%
Tonga	0.77944	60%	Papua New Guinea	0.68849	34%	Tuvalu	0.63633	27%
Niue	0.75815	74%	Niue	0.58470	4%	Fiji	0.60976	23%
Papua New Guinea	0.66380	39%	Fiji	0.55396	22%	Vanuatu	0.55639	13%
Vanuatu	0.61383	69%	Tuvalu	0.51322	12%	Niue	0.37555	20%
Cook Islands	0.54756	85%	Micronesia	0.46297	6%	Cook Islands	0.36901	26%
Fiji	0.49615	65%	Vanuatu	0.42993	10%	Nauru	0.34834	22%
Samoa	0.49253	66%	Samoa	0.33059	21%	Palau	0.29440	14%
Palau	0.46856	85%	Marshall Islands	-0.22163	14%	Samoa	-0.08536	11%
Micronesia	0.32426	68%	Palau	-0.23706	11%	Marshall Islands	-0.36829	4%
Marshall Islands	-0.12869	75%	Cook Islands	-0.61949	8%	Micronesia	-0.39288	6%

Source of Sector Share: ADO database

Gross Fixed Capital Formation

Trends in GFCF also coincides with NTL growth for those economies with available data,

Natural logtransformed NTL Sum of lights (SoL)


Natural logtransformed GFCF

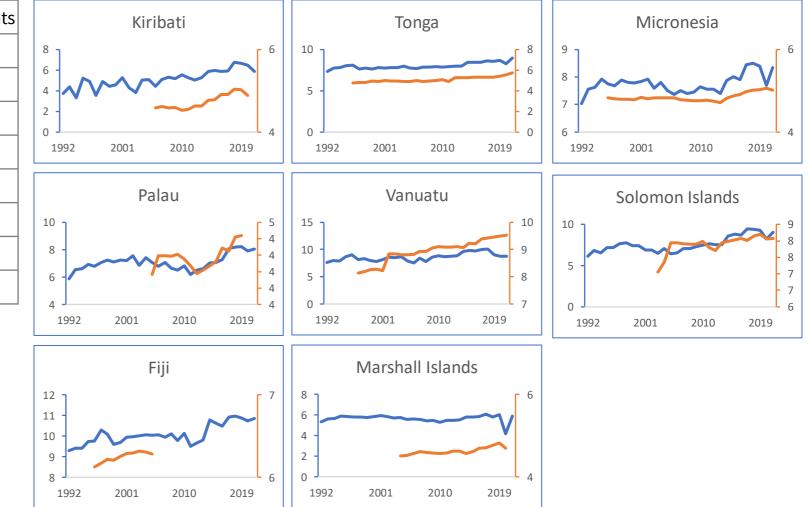
	Correlation (Year-on-Year)	Data Points
Solomon Islands	0.72041	19
Tonga	0.71544	26
Palau	0.58944	15
Kiribati	0.54386	15
Vanuatu	0.54006	25
Tuvalu	0.37516	3
Fiji	0.28052	10
Marshall Islands	0.10609	17
Micronesia	-0.54170	26

albeit not as strong as GDP.

Source of GFCF: ADO database

-1.0 Correlation 1.0

Government Expenditure

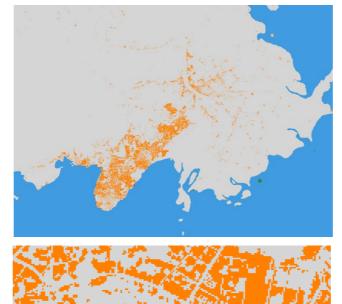

Natural logtransformed NTL Sum of lights (SoL)

Natural logtransformed govt expenditure

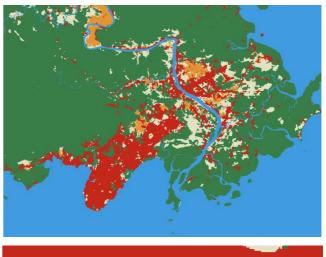
	Correlation (Year-on-Year)	Data Points
Kiribati	0.87632	15
Tonga	0.83530	26
Micronesia	0.75251	26
Palau	0.74453	15
Vanuatu	0.65527	25
Solomon Islands	0.61117	19
Fiji	0.17607	10
Marshall Islands	0.13722	17

Source of GFCF: ADO database

Is growth concentrated in built/urban areas?


buildings

Using datasets that represent built environment where human activities are concentrated, will NTL better describe a country's economic activity?

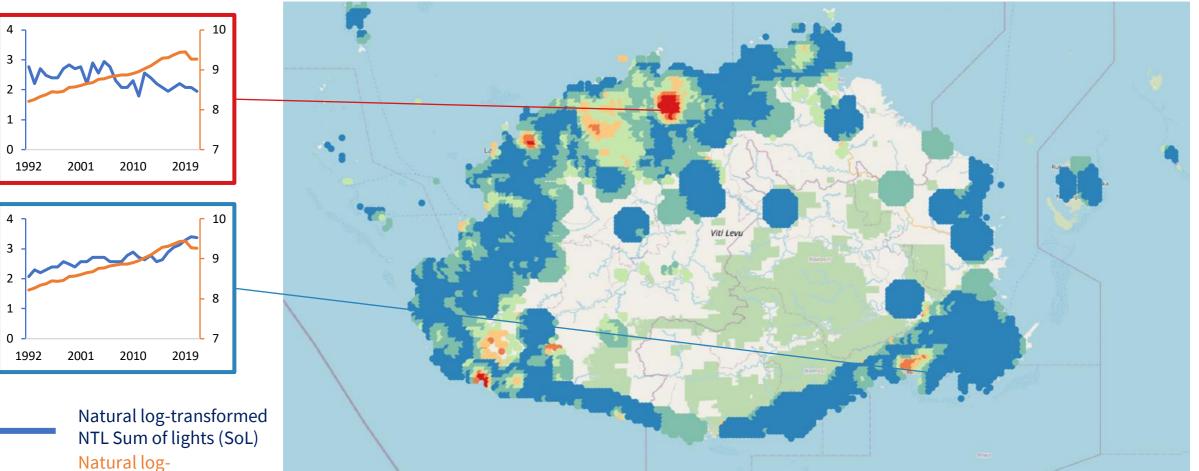

Open Street Map

World Settlement Footprint

ESRI/Sentinel-2 Land Cover

built area

Is growth concentrated in built/urban areas?

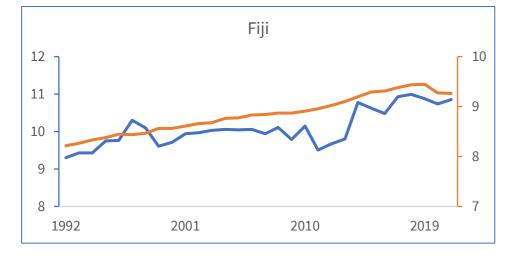

- Less than half of the countries showed higher correlation when limiting the analysis to built-up areas only.
- Most significant improvement is in Vanuatu due to increased NTL from volcanic eruptions.

	Sum of Lights - All Areas	Sum of Lights - WSF Buildings Only	Sum of Lights - Builtup Areas Only
	Correlation (Year-on-Year)	Correlation (Year-on-Year)	Correlation (Year-on-Year)
Nauru	0.97018	0.96015	0.96354
Solomon Islands	0.85171	0.77464	0.85100
Papua New Guinea	0.84632	0.82680	0.85856
Kiribati	0.83344	0.40621	0.46862
Fiji	0.80531	0.74002	0.76534
Tonga	0.80329	0.08920	0.51525
Niue	0.72236	0.38825	0.55554
Samoa	0.66879	0.73010	0.76078
Vanuatu	0.65570	0.44553	0.84314
Tuvalu	0.56104	0.56909	0.59503
Cook Islands	0.46144	-0.00631	0.03843
Palau	0.39601	-0.66872	-0.37992
Micronesia	0.33772	0.49574	-0.29960
Marshall Islands	-0.20969	-0.38800	-0.43588

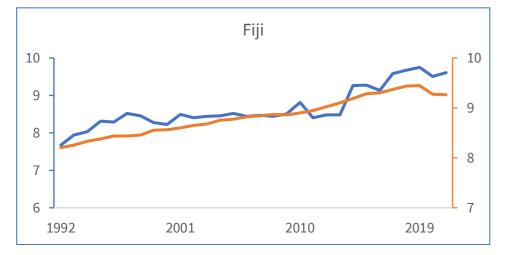
Source: Author's computation

Pixel-level Analysis

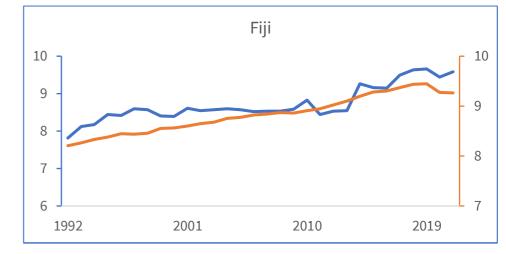
• Blue and green areas are pixels with positive correlation to national GDP, while red and orange areas are those with negative correlation.

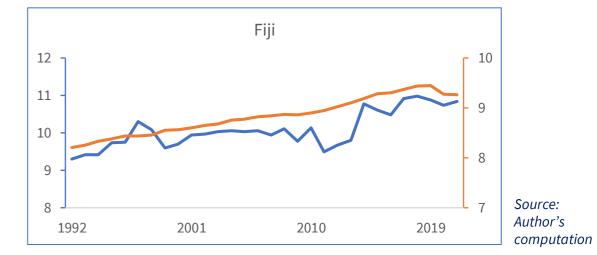


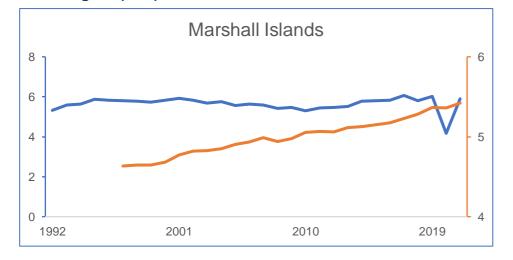
Natural logtransformed GDP PPP


Pixel-level Analysis: Fiji

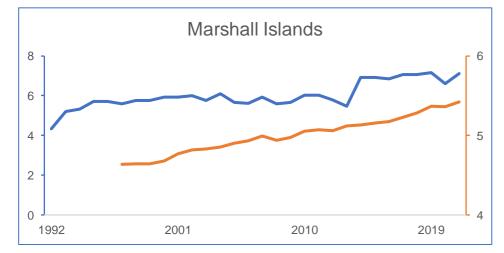
- Natural log-transformed NTL Sum of lights (SoL) Natural logtransformed GDP PPP
- Limiting analysis to positively correlated pixels showed better correlation with national GDP levels


Sum of Lights (SoL) from All Areas; Correlation: 0.80531


SoL from pixels with least +0.50 correlated, n = 4,969; Correlation: 0.90041


SoL from pixels with least +0.25 correlated, n = 8,419; Correlation: 0.88558

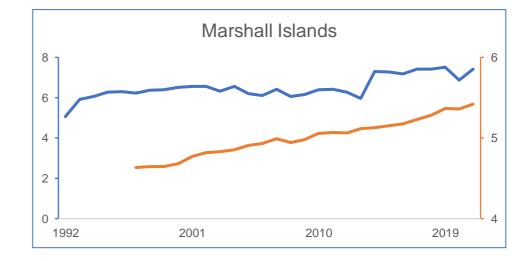
SoL from pixels with least +0.70 correlated, n = 2,131; Correlation: 0.91743



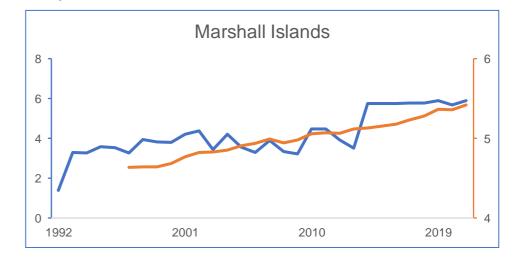
• Limiting analysis to positively correlated pixels showed better correlation with national GDP levels

Sum of Lights (SoL) from All Areas; Correlation: -0.2097

SoL from pixels with least +0.50 correlated, n = 183; Correlation: 0.7540

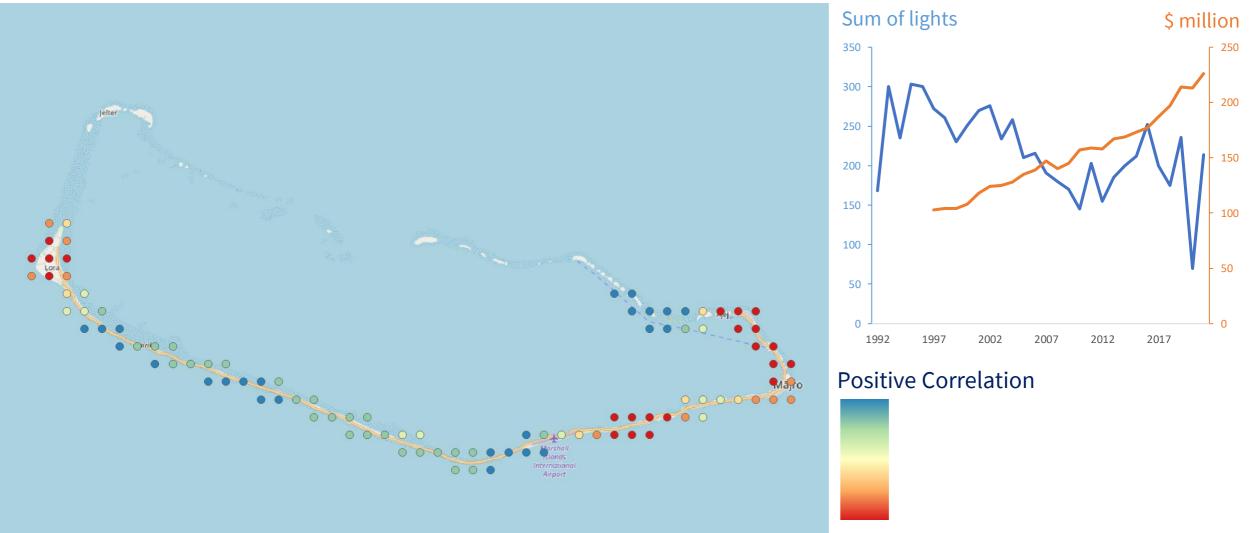


SoL from pixels with least +0.25 correlated, n = 260; Correlation: 0.6663

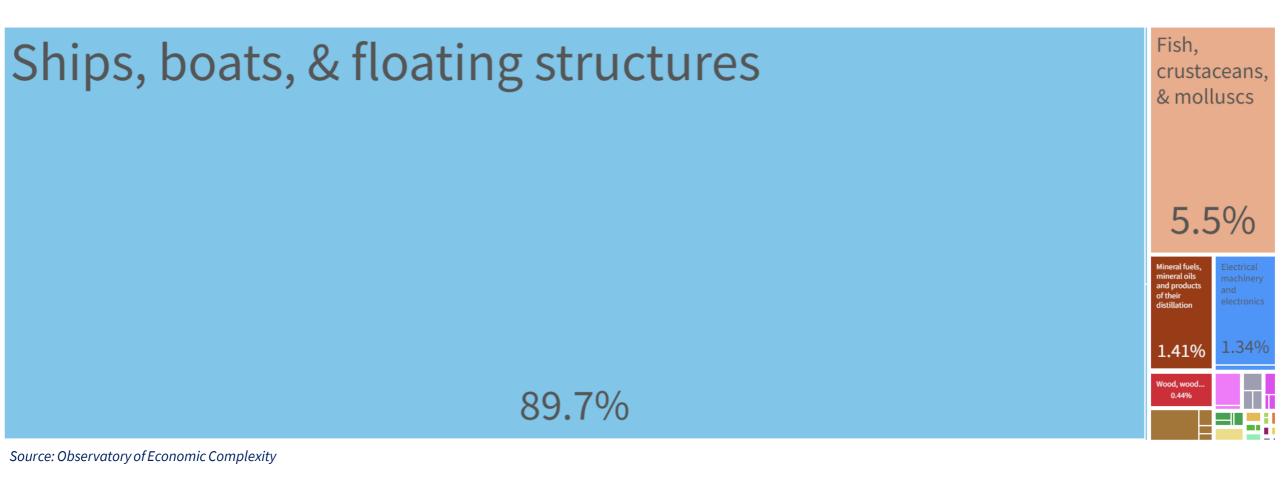

Natural log-transformed NTL Sum of lights (SoL)

transformed GDP PPP

Natural log-



Enewetak


Wotje

• For RMI, historical nighttime lights in the capital of Majuro city is inversely proportional with the country's GDP

Negative Correlation

Exports Composition

Pixel-level Analysis

• Limiting analysis to positively correlated pixels showed better correlation with national GDP levels

	NTL vs GDP PPP, natural log transformed					
PIE		Sum of Lights - Pixels at	Sum of Lights - Pixels at	Sum of Lights - Pixels at		
	Sum of Lights - All Areas	least + 0.25 correlated	least + 0.5 correlated	least + 0.7 correlated		
Nauru	0.97018	0.96291	0.96291	0.96291		
Vanuatu	0.6557	0.74645	0.92265	0.9356		
Papua New Guinea	0.84632	0.89939	0.91244	0.93138		
Fiji	0.80531	0.85585	0.88532	0.91743		
Solomon Islands	0.85171	0.86211	0.86289	0.88572		
Samoa	0.66879	0.74218	0.80612	0.85981		
Kiribati	0.83344	0.8002	0.80727	0.85511		
Tonga	0.80329	0.81981	0.81736	0.84361		
Palau	0.39601	0.51721	0.53246	0.80517		
Micronesia	0.33772	0.60448	0.69751	0.78026		
Niue	0.72236	0.71374	0.72258	0.77587		
Marshall Islands	-0.20969	0.66631	0.75398	0.75996		
Cook Islands	0.46144	0.57175	0.62028	0.67251		
Tuvalu	0.56104	0.56123	0.56123			

Source: Author's computation

Summary

- Integrating DMSP's longer availability and VIIRS higher resolution, the harmonized dataset was able to produce a 30-year annual NTL series. Total sum of lights from the corresponding administrative boundaries showed moderate to strong correlation with GDP to 9 out of 14 PIEs.
 - Limiting the area of interest to buildings and built-area improved correlation minimally.
- Pixel-level correlation improved results among all PIEs, each one yielding moderate to strong correlation. The number of excluded grids only reached up to around 30% maximum and seven PIEs only need to remove 10% or less.
- With significant correlation established between NTL and GDP, taking advantage of this publicly available dataset can be a focus of research in the subregion. Aside from GDP, NTL's relationship with other macroeconomic indicators can be evaluated if macroeconomic data is available.
- Like other remote sensing data, NTL is not designed to replace conventional datasets. Rather, different applications of NTL are studied to complement traditional datasets and methods.